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Abstract—Training and deploying deep learning models in
real-world applications require processing large amounts of data.
This is a challenging task when the amount of data grows
to a hundred terabytes, or even, petabyte-scale. We introduce
a hybrid distributed cloud framework with a unified view to
multiple clouds and an on-premise infrastructure for processing
tasks using both CPU and GPU compute instances at scale.
The system implements a distributed file system and failure-
tolerant task processing scheduler, independent of the language
and Deep Learning framework used. It allows to utilize unstable
cheap resources on the cloud to significantly reduce costs.
We demonstrate the scalability of the framework on running
pre-processing, distributed training, hyperparameter search and
large-scale inference tasks utilizing 10,000 CPU cores and 300
GPU instances with overall processing power of 30 petaflops.12

Index Terms—Deep Learning, Cloud Computing, Distributed
Systems

I. INTRODUCTION

Deep Learning (DL) based models have outperformed man-
ual feature engineered algorithms in a wide range of domains
including computer vision, natural language processing, audio
processing [8], [15], [22], [23], [25], [29], [41]. The amount
of labelled data required for training production-ready models
achieves a terabyte-scale [14], [37]. The unlabelled data to
execute those models reaches a petabyte-scale [5], [7], [42]
. Such computational resources are on-demand available on
clouds such as Amazon Web Services (AWS), Google Cloud
Platform (GCP) or Azure.

Modern Deep Learning frameworks such as PyTorch [28],
Tensorflow [6], MXNet [12], Theano [9] and Caffe [19] are
well-positioned for training and deploying models on single
multicore machines with multiple GPUs or TPUs. Training
state-of-the-art models on terascale data often takes weeks
or months to converge. To make training faster, DL frame-
works such as PyTorch or Tensorflow recently introduced
synchronous and asynchronous distributed training methods to
achieve an almost linear speedup with respect to the number
of nodes.

As the number of nodes in a distributed cluster grows,
problems such as provisioning, orchestrating, fault-tolerance,
distribution data management, task planning, and execution
arises. For executing Big Data workloads, several widely
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accepted synchronous parallel processing systems have been
introduced such as MapReduce [13], Apache Spark [40] and
Dryad [18]. Additionally, task-parallel frameworks are getting
increased usage such as Dask [31] or CIEL [27]. They provide
fine-grained task management. These frameworks are very
efficient for ETL tasks but lack native deep learning support.
A recent introduction to the family is Ray, which implements
a dynamic task-parallel framework that is suited for deep
learning and reinforcement learning [26].

To manage High-Performance Computing (HPC) work-
loads, container technology has recently become well suite
choice for packaging environment libraries [39]. Frameworks
such as Kubernetes enable massive distribution of stateless
applications packaged in a container on a cluster of nodes
in fault-tolerant way [10]. However, it still lacks an effi-
ciently distributed data management unit, workflow scheduling
system, and support for stateful applications such as model
training. Packages such as KubeFlow and Argo attempt to
extend Kubernetes to support the implementation of machine
learning pipelines [17].

For data-intensive workloads, a variety of distributed file
storage systems have been introduced [32] such as NFS [34]
or HDFS [35]. NFS-based file systems significantly decrease
multi-read speed and lower bound the computing speed. They
often do not scale on multi-write scenarios. There is always
a trade-off between latency and scalability. For web-based
applications, cloud providers offer an object storage solution
that has high scalability but suffers from low-latency memory-
intensive operations.

We introduce a hybrid distributed cloud framework with a
unified view of multiple clouds and on-premise infrastructure
for processing tasks. We have made the following contribu-
tions

• We design and build a distributed framework that uni-
fies preprocessing, training, hyperparameter search and
deploying large scale applications on the cloud.

• To achieve scalability we design and deploy a distributed
file system that has near-zero delay for deep learning jobs
in comparison to downloading the data locally on the
machine with similar performance.

• Provide fault-tolerance with respect to computational
node failures and support utilization of unstable cheap
resources on the cloud.
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Fig. 1. System Architecture a) Interface uploads the training data, source code and YAML recipe to the Master Node. Source files are chunked and uploaded
to Object Storage. The Recipe is parsed to create a computational graph in in-memory Key-Value Storage. For each workflow, the cluster is created in the
cloud. Each computational node has a Node Server that handles the management of the node and executing client containers. b) Workflow has four main
stages. Provisioning the infrastructure, orchestrating nodes, executing tasks and monitoring workers.

• Abstract away cloud infrastructure setup and provisioning
from the user with native cloud integration.

II. COMPUTATIONAL MODEL

In this section, we discuss design decisions made for the
system and user interface to specify the computation workload.

A. Computational Workflows

Workflow is a directed acyclic graph consisting of Ex-
periment nodes and their dependency as edges. Single
Experiment contains multiple Tasks. Tasks within the same
experiment execute the same command with different argu-
ments. Arguments can be templated for efficient parameter
space definitions. Each Experiment has an associated container
that is deployed on all computational workers.

Task is the execution unit, which encapsulates a process.
Each Task has assigned Node, which represents the com-
putation worker. Single Node might execute multiple Tasks.
The number of nodes available corresponds to the number of
workers inside the cluster.

B. Interface

Workflows are specified using code-as-infrastructure in-
terface defined in YAML recipes as seen in Fig. ??. The
recipe is parsed by the server and translated into a directed
acyclic graph of experiments. The interface lets users specify
the environment, hardware settings, number of workers, pa-
rameters and parameterized commands. The user can interface
the system through CLI or Web UI.

C. Parameters

The user can specify the list of parameters that can be in-
serted into command arguments during execution. Parameters
can be sampled from a discrete class or continuous range. To
compute parameters for each Task, the algorithm generates the
Cartesian product of all discrete parameters and samples from
the set n times with minimal repetition. n is defined to be the
number of samples from a recipe. Then, it samples n times
from each continuous parameter range and randomly matches

with discrete sampled parameters. This is necessary to support
both hyper-parameter search and inference with grid iterators.

III. SYSTEM OVERVIEW

The system receives data, chunks it and stores it in object
storage. The recipe is submitted to deploy the deep learning
workflow on a cluster of nodes, which mounts the distributed
file system.

A. Distributed Data Management
In order to be framework agnostic and require no further

modification of the client program, we chunk the file system it-
self and store it in object storage provided by the cloud vendor
(e.g. AWS S3). The system implementation is similar to closed
source ObjectiveFS [1] and tuned for deep learning tasks.
The distributed file-system wraps POSIX API and acts as a
middle layer with chunking, caching and state synchronization
mechanisms across all nodes. When the program queries the
file system for a specific file, the integration layer checks
which chunk contains the file to download. In the next query,
the file system can check if the existing chunk contains the
next required file before fetching it from the cloud. Within
the program’s context, files that are stored in remote chunked
object storage appear to be local files. Any deep learning
application without further modification will take advantage
of the highly scalable storage.

Deep learning frameworks such as PyTorch and Tensor-
Flow natively support asynchronous data fetching from the
local storage to the GPU using data loaders. Often the deep
learning training iteration is bounded by the compute cycles
on GPUs. If one combines the distributed remote storage and
asynchronous data fetching, the training speed is almost the
same as if the data was stored locally on the machine with
respect to the following constraints.

• Network locality - We assume that computational nodes
that access the data are physically located near object
storage servers.

• Chunksize - well chosen with respect to latency to
maximize the throughput as shown in Fig. 2. It should
be in the range 12-100MB.



Fig. 2. Hyper File System on a single machine (AWS p3.2xlarge) can achieve
up to 875 MB/s download speed with multithreading T and multiprocessing
P enabled. The batch size was chosen smaller for large models to fit in the
GPU RAM.

The suggested file system can leverage the scalability of the
object storage and provide data access to the cluster of nodes
with almost native speed for deep learning jobs as shown in
Fig. 3.

B. Cloud Infrastructure

Distributed frameworks such as Spark, provide a functional
ecosystem for computational tasks. End-users should only
specify the program and apply it to large datasets. User
is limited to only using supported libraries abstracted in
MapReduce framework. State-of-the-art libraries are out of
reach.

Provisioning: When constraints of the system does allow
arbitrary package support, then the whole environment and
necessary packages should be transported to the computational
node. We use container technology to bake the necessary
libraries. Compute nodes need to have docker support to
execute arbitrary containers and Nvidia CUDA [21] libraries
for processing deep learning operations on the GPU.

Orchestration: Due to its generic feature of container
technology, the Virtual Machine (VM) images necessary to
run containers can be based on any Unix based operating
systems including CoreOS, Ubuntu and CentOS. VM images
are built only once and stored in the cloud. It acts as a proxy
to execute custom specified containers. The user can specify
the container from the public repository. After cloud instances
are provisioned, each instance downloads a client container.
This mechanism allows supporting any framework, library
or package without constraints. We also cache frequently
used containers such as Tensorflow, Pytorch, Jupyter directly
inside VM images to reduce loading time. In addition to
custom docker management, the system can offload container
orchestration to managed Kubernetes [10].

Networking: For cloud infrastructure orchestration, we use
Terraform, which provides code-as-infrastructure language for
defining cloud resources. For each job execution, the system
specifies a Virtual Private Network with Internet Gateway. It
makes cluster nodes accessible inside the network for use cases
that require state synchronization across nodes such as during

distributed training. Alternatively one can use object storage
as a parameter server to store the model without networking
setup.

C. Implementation

As shown in Fig. 1, the architecture of the distributed
framework consists of main components: Interface, Master
and Node. Master is responsible for receiving the recipe of
the pipeline, parsing and creating workflow objects including
experiments and tasks. The objects are stored in-memory key-
value cache Redis. As a backup alternative, the system stores
the state into DynamoDB. Then, the master starts a new
workflow service as an adjacent container to orchestrate and
schedule tasks. During the orchestration process, each compute
worker runs a node server that listens to commands executed
by the workflow manager. Each node starts to pull the client
specified container and mount the distributed file system. Once
the node is ready, the workflow manager can execute the
client’s specified commands.

There are three types of logs that are collected into Elastic
Logstash: client application logs, CPU/GPU utilization logs
and operating system logs [16] .

In addition to the scheduling system, we deploy our own
object storage layer for providing S3-like API [36]to client
interface. When the data is uploaded to Minio server [4],
files get chunked and stored on the distributed file system.
Celery is used for asynchronous task management. The task
management system is similar to Apache Airflow [3] and other
workload management systems such as Splunk. It is different
from frameworks such as Dask [31] , CIEL [27] or Ray [26]
in terms of execution granularity.

D. Fault tolerance

In order to optimize cloud resource allocation, cloud ven-
dors provide spots or preemptible instances. Those instances
are usually 2 or 3 times cheaper but can be terminated
anytime depending on the demand and the price per hour
bid. For stateful long-lasting jobs, cost optimization is an
attractive option, however, it requires additional compute logic
implementation to recover the state.

Since the system already provides a distributed file system
backed by remote object storage and a scheduling system, it
becomes straightforward to implement a fault-tolerant system
that can handle instability. When a node fails, the task with
exact command arguments gets rescheduled on a different
node. In training use cases, modern deep learning frameworks
provide an easy interface to store and retrieve model states.
Hence, the training can be continued without any additional
code modifications.

IV. EVALUATION

To evaluate the system we run pre-processing, distributed
training, hyper-parameter search and large scale inference
using AWS CPU M5 family and GPU P3 family compute
instances. We use AWS S3 to store file system chunks.



A. Preprocessing

To test the scalability of the system for ETL tasks, we
set up a preprocessing experiment. 100 million text files
from commoncrawl [5] dataset are uploaded to the distributed
storage. The amount of data achieves 10TB. We specify
the infrastructure to spin up 110 instances each with 96
CPU cores. The processing script takes 100,000 text files and
transforms them into tfrecord files. During the transformation,
spaCy [2] package is used for filtering, tokenizing and splitting
paragraphs. We also enable spot instances to reduce costs and
test fault tolerance.

B. Distributed Training

We defined a recipe for training object recognition model
YoloV3 [30] using PyTorch [28] using Horovod [33] . Then,
we uploaded COCO dataset [24] to the storage. The training
script reads all images and labels from the defined path.
Furthermore, parameters such as how many epochs, learning
rate and what input image size are parameterized in the recipe.
We also parametrize model-specific parameters such as a total
number of classes, confidence threshold, nms threshold and
iou threshold.

Nvidia K80 GPUs are slow to train the model. With a single
line configuration change, we deployed the training on Nvidia
V100 GPUs with spot enabled instances to reduce costs. The
batch size for the training was accordingly modified. The cost
would be $8.48/h instead of $0.95/h, but the training is 50x
faster with 6x efficiency gain. We modified hyper-parameters
and started another experiment with zero effort.

We also provide benchmarking of data streaming against
storing data in local files while training data-intensive com-
puter vision models as shown in Fig. 3 and Fig. 3.

C. Hyperparameter search

Gradient boosting machine, XGBoost [11] or LightGBM
[20], is one of the best off-the-shelf machine learning solvers
for tabular data, however training those models can be com-
putationally very heavy and have a lot of parameters to tune.
There are 12 parameters to tune for the tree booster. If you
try 2 choices for each one, there will be 4096 different
combinations. If each training takes 10 mins to complete,
trying out all those 4096 combinations sequentially would take
28.4 days. Using our system, we made the experiments run
in 10 minutes by linearly increasing the cluster size without
source code modification.

D. Large-Scale Inference

For production-ready processing, we upload an ImageNet
dataset [14] and split it into 300 folders. Each folder contains
1500 images. Using Hyper interface, we easily parallelized the
inference execution of Yolo model to 300 GPU instances with
the overall processing of 2 petaflops.

Fig. 3. Streaming data through Hyper File System while training a deep
learning model is equivalent to reading data from the local file system

Fig. 4. In the asynchronous data loading figure, the first three models (VGG,
Resnet101, and DenseNet) have no data bottleneck. The benchmarks have
been produced on AWS using a p3.2xlarge machine with V100 GPU. The
data is stored on S3 within the same region.

V. DISCUSSION

Building Hyper was inspired by processing a petascale
amount of brain images for connectomics [42]. At the time,
Map-Reduce based frameworks such as Spark and directed
graph processing frameworks such as Dask or Ray have not
been efficient in executing deep learning computes. Initially,
we used AirFlow [3] , then used framework ChunkFlow [38].
Hyper is another generation of cloud-agnostic, data-agnostic
distributed deep learning computed with scale. Since Hyper
was released hundreds of people have used the platform and
several companies have used it in production. Here we discuss
some of the early feedback and limitations of the software.

Feedback When Hyper is used in production, it completely
encapsulates infrastructure and is flexible enough to customize
projects under user needs. The user only needs to upload the
data and the source code to the distributed file storage through
CLI or Web UI. Then submit the infrastructure as minimal
code to describe the compute workflow. It provides interface
to log results of hyperparameter search.

Ecosystem Hyper supports any open source machine learn-
ing libraries and frameworks. We can offer any pre-built
algorithms and models that suit different business cases.

On-prem Deployment They system can deploy the soft-
ware to any on-premise infrastructure with Kubernetes sup-



port.
Built-in Modeling Algorithms We support cutting-edge

pre-built algorithms and models for a wide range of industry
use-cases such as image recognition, speech to text, text to
speech, anomaly detection, recommendation and personaliza-
tion, and others.

Unlimited Persistent Data Lake Scalable and cost-efficient
persistent central Data Lake that merges data from all of
your different data sources. A single source of truth for a
complete view of the datasets. 10x cheaper on the storage
system compared to AWS EFS expenses with almost all native
speed of data read/write.

Spot/Pre-emptible Instance Cost Savings AWS and GCP
offer dynamic bidding for instances which are usually 3x
cheaper than normal instances but also can be stopped at any
time. Spot instance management layer makes it very easy to
use spot instances and also enjoy the cost-saving.

Full lifecycle ML pipeline Drag and drop machine learn-
ing modules that include data ingestion modules, data ETL
modules, built-in model training algorithm modules, hyper-
parameter search modules, and model deployment modules.
Combine the modules into a pipeline for a full lifecycle of
your machine learning task.

Limitations Current limitations include low interactivity of
the workflow. Once the workflow has been defined. Users
are not able to modify the execution unless terminated or
start a new one. Compared to Ray and Dask, Hyper modifies
the surroundings of the application-defined by deep learning
researcher - and has minimal impact on the code itself.
Even though it brings several advantages for end-users, it
also provides strict limitations on computing optimization and
efficiency. Optimizations such as GPU full capacity utilization
and inter-network communications are still handled by the
user.

VI. CONCLUSION

Hyper provides a unified view of multiple clouds and on-
premise infrastructure without requiring a team of DevOps
engineers to save AI/ML-Ops time. It provides cloud cost
savings and transparent compute resource utilization tracking.
Hyper Storage solutions are significantly better for data-
intensive deep learning tasks compared to cloud-native NFS-
like offers and much more cost-efficient since they are backed
by object storage.

Hyper enables data scientists to be highly efficient in ma-
chine learning and deep learning. It provides a framework for
running experiments, collecting logs and comparing models
including one-click Jupyter notebooks or Tensorboard graphs
using Web UI or CLI. Data scientists can plug-and-play
state-of-the-art deep learning models in Computer Vision,
NLP, and other domains to kickstart their project. They can
execute large-scale distributed training or batch processing
jobs through a very simple interface without knowing about the
infrastructure and define continuous workflows for automatic
model training, validation, benchmarking and deployment.

Future work includes the development of various Bayesian
optimization algorithms for hyper-parameter tuning of models,
seamless integration with Kubernetes and interactive work-
flows.
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